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LETTER TO THE EDITOR 

Off-diagonal hydrogenic and generalized Kepler 
(pr) integrals in closed form ,,k e -qr sin 

cos 

N Bessis, G Bessis and G Hadinger 
Laboratoire de Spectroscopie et de Luminescence, Universite Claude Bernard, Lyon I, 
69621 Villeurbanne. France 

Received 27 May 1975 

Abstract. Closed-form expressions of the off-diagonal (nlylp e-4' ::(pr)[n'/'y') matrix 
elements ( n  # n', I # I', y # y ' )  between generalized Kepler Rb:?(jr) functions have been 
obtained from ladder operator considerations. As a particular case ( y  = y '  = 0), these 
integrals reduce to the off-diagonal rk e-4' t;(pr) hydrogenic integrals. 

It is known (Infeld and Hull 1951) that the generalized Kepler functions RL:;(pr), where 
y is any constant, are solutions of a factorizable equation. For y = 0, they reduce to the 
usual hydrogenic functions RL(Zr/n). As a consequence of the factorizability, one can 
apply the 'multi-step' or 'accelerated' operator procedure (Hadinger et a1 1974) to obtain 
a closed-form expression of any matrix element in terms of one unique integral which, 
in most cases of interest in physics, is easily found. 

Recently Kumei (1974), using a group theoretic argument, has paid special attention 
to the hydrogenic r" e-qr $ (pr) integrals and closed-form expressions of the diagonal 
integrals have been obtained for special cases. As it has been shown elsewhere (Hadinger 
et a1 1974), the use of the Infeld-Hull 'artificial' factorization enables one to deal with the 
current matrix element without having to discriminate between diagonal and off- 
diagonal cases. In this paper, closed-form expressions for the off-diagonal r" e-4r ::(pr) 
Kepler integrals are derived. 

The Kepler functions are solutions of the (type F) factorizable equation 

0 

where a is a parameter. The associated ladder operators and factorization function are 

L(I+y) = - a 2 / ( i + y ) 2  

with the quantification condition (class I) 

n-I-1 = U = integer 2 0. 
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Consequently, the generalized Kepler functions are solutions of the following pair of 
differential-difference equations : 

with 

N I + ,  = [a2(n- O(n+ 2 y  + O]”2/(n+y)( l+Y).  

In the same way as for the hydrogenic functions, starting from the one-step ladders (l), 
one can buiId up a ‘u-step’ or ‘accelerated ladder’ operator, involving the artificial 
parameter p = a/(n+y). This operator, when applied to the key function (U = 0) 
generates any Kepler function, and consequently, any matrix element of an operator Q 
can be expressed in terms of a ‘key’ parametric integral (see Hadinger er al 1974, table 1 
for type F) 

+ + ~ + ~ ’ + 1 ’ + 2 + r + f ’  e-(p+p’)rQdr. 

Hence, for Q = rk e-q‘ z:(pr), one can write 

The integral in (2) can be found in Gradshteyn and Ryzhik (1965). Finally, one gets the 
following expression : 

sin 
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This result is valid for complex q and p if Re(p+q+p’) > (Imp(. The associated con- 
ditions for k are : 

- k - 3 

- k - 2 

for the Ik e-‘7‘ sin(pr) integral 

for the Ik e-4‘ cos(pr) integral. 
I + y + I ‘ + y ’ + l  > 

C and K are given by (3). 

off-diagonal hydrogenic integral. 
Of course, when setting y = 0, p = Z/n,  one readily obtains the (nIlIk e-qr ::(pr)(n’l’) 
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