Off-diagonal hydrogenic and generalized Kepler $r^{\mathrm{K}_{\mathrm{e}}} \mathrm{e}_{\cos }^{\sin }(\mathrm{pr})$ integrals in closed form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 8 L61
(http://iopscience.iop.org/0305-4470/8/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:08

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Off-diagonal hydrogenic and generalized Kepler $\boldsymbol{r}^{\boldsymbol{k}} \mathrm{e}^{-q \boldsymbol{q} \sin } \cos (p r)$ integrals in closed form

N Bessis, G Bessis and G Hadinger
Laboratoire de Spectroscopie et de Luminescence, Université Claude Bernard, Lyon I, 69621 Villeurbanne, France

Received 27 May 1975

Abstract

Closed-form expressions of the off-diagonal $\left.\langle n| \gamma\left|r^{k} \mathrm{e}^{-q r \sin }(p r)\right| n^{\prime} l^{\prime} \gamma^{\prime}\right\rangle$ matrix elements ($n \neq n^{\prime}, l \neq l^{\prime}, \gamma \neq \gamma^{\prime}$) between generalized Kepler $R_{n+\gamma}^{l+\gamma}(\mu r)$ functions have been obtained from ladder operator considerations. As a particular case ($\gamma=\gamma^{\prime}=0$), these integrals reduce to the off-diagonal $r^{k} e^{-q r \sin (p r)}$ hydrogenic integrals.

It is known (Infeld and Hull 1951) that the generalized Kepler functions $R_{n+\gamma}^{l+\gamma}(\mu r)$, where γ is any constant, are solutions of a factorizable equation. For $\gamma=0$, they reduce to the usual hydrogenic functions $R_{n}^{l}(Z r / n)$. As a consequence of the factorizability, one can apply the 'multi-step' or 'accelerated' operator procedure (Hadinger et al 1974) to obtain a closed-form expression of any matrix element in terms of one unique integral which, in most cases of interest in physics, is easily found.

Recently Kumei (1974), using a group theoretic argument, has paid special attention to the hydrogenic $r^{k} \mathrm{e}^{-q r \sin }(p r)$ integrals and closed-form expressions of the diagonal integrals have been obtained for special cases. As it has been shown elsewhere (Hadinger et al 1974), the use of the Infeld-Hull 'artificial' factorization enables one to deal with the current matrix element without having to discriminate between diagonal and offdiagonal cases. In this paper, closed-form expressions for the off-diagonal $r^{k} \mathrm{e}^{-a r \sin }{ }_{\cos }(p r)$ Kepler integrals are derived.

The Kepler functions are solutions of the (type F) factorizable equation

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{(l+\gamma)(l+\gamma+1)}{r^{2}}+\frac{2 a}{r}-\frac{a^{2}}{(n+\gamma)^{2}}\right) R_{n+\gamma}^{l+\gamma}=0
$$

where a is a parameter. The associated ladder operators and factorization function are

$$
\begin{align*}
& H_{l+\gamma}^{ \pm}=\frac{l+\gamma}{r}-\frac{a}{l+\gamma} \mp \frac{\mathrm{d}}{\mathrm{~d} r} \tag{1}\\
& L(l+\gamma)=-a^{2} /(l+\gamma)^{2}
\end{align*}
$$

with the quantification condition (class I)

$$
n-l-1=v=\text { integer } \geqslant 0
$$

Consequently, the generalized Kepler functions are solutions of the following pair of differential-difference equations:

$$
\begin{aligned}
& \left(\frac{l+\gamma+1}{r}-\frac{a}{l+\gamma+1}-\frac{\mathrm{d}}{\mathrm{~d} r}\right) R_{n+\gamma}^{l+\gamma}=N_{l+\gamma+1} R_{n+\gamma}^{l+\gamma+1} \\
& \left(\frac{l+\gamma}{r}-\frac{a}{l+\gamma}+\frac{\mathrm{d}}{\mathrm{~d} r}\right) R_{n+\gamma}^{l+\gamma}=N_{l+\gamma} R_{n+\gamma}^{l+\gamma-1}
\end{aligned}
$$

with

$$
N_{l+\gamma}=\left[a^{2}(n-l)(n+2 \gamma+l)\right]^{1 / 2} /(n+\gamma)(l+\gamma)
$$

In the same way as for the hydrogenic functions, starting from the one-step ladders (1), one can build up a ' v-step' or 'accelerated ladder' operator, involving the artificial parameter $\mu=a /(n+\gamma)$. This operator, when applied to the key function $(v=0)$ generates any Kepler function, and consequently, any matrix element of an operator Q can be expressed in terms of a 'key' parametric integral (see Hadinger et al 1974, table 1 for type F)

$$
\mathscr{I}_{t^{\prime}}=\int_{0}^{\infty} r^{l+\gamma+\gamma^{\prime}+l^{\prime}+2+t+t^{\prime}} \mathrm{e}^{-\left(\mu+\mu^{\prime}\right) r} Q \mathrm{~d} r
$$

Hence, for $Q=r^{k} \mathrm{e}^{-q r \sin }(p r)$, one can write

$$
\begin{align*}
&\langle n l \gamma| r^{k} e^{-q r \sin }(p r)\left|n^{\prime} l^{\prime} \gamma^{\prime}\right\rangle \\
&= C C^{\prime} \sum_{t=0}^{v}\binom{v}{t} \frac{(-2 \mu)^{t}}{\Gamma(2 l+2 \gamma+2+t)} \sum_{t^{\prime}=0}^{v^{\prime}}\binom{v^{\prime}}{t^{\prime}} \frac{\left(-2 \mu^{\prime}\right)^{\prime}}{\Gamma\left(2 l^{\prime}+2 \gamma^{\prime}+t^{\prime}+1\right)} \\
& \times \int_{0}^{\infty} r^{K+t+t^{\prime}-1} \mathrm{e}^{-\left(\mu+q+\mu^{\prime}\right) \sin _{\cos }(p r) \mathrm{d} r} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& K=l+\gamma+l^{\prime}+\gamma^{\prime}+k+3 \\
& C=(-1)^{l+1}(2 \mu)^{l+\gamma+\frac{1}{2}}\left(\frac{\Gamma(n+l+2 \gamma+1)}{v!2(n+\gamma)}\right)^{1 / 2} \tag{3}
\end{align*}
$$

The integral in (2) can be found in Gradshteyn and Ryzhik (1965). Finally, one gets the following expression :

$$
\begin{aligned}
&\langle n l \gamma| r^{k} \mathrm{e}^{-q r \sin }(p r)\left|n^{\prime} l^{\prime} \gamma^{\prime}\right\rangle \\
&= C C^{\prime} \sum_{t=0}^{n-t-1}\binom{n-l-1}{t} \frac{1}{\Gamma(2 l+2 \gamma+2+t)}\left(\frac{-2 \mu}{\mu+q+\mu^{\prime}}\right)^{\prime} \\
& \times \sum_{i^{\prime}=0}^{n^{\prime}-l^{\prime}-1}\binom{n^{\prime}-l^{\prime}-1}{t^{\prime}} \bar{\Gamma} \frac{\left(-2 \mu^{\prime}\right)^{t}}{\Gamma\left(2 l^{\prime}+2 \gamma^{\prime}+2+t^{\prime}\right)} \frac{\Gamma\left(K+t+t^{\prime}\right)}{\left[\left(\mu+q+\mu^{\prime}\right)^{2}+p^{2}\right]^{\left(K+t+t^{\prime}\right) / 2}} \\
& \times \sin _{\cos }\left[\left(K+t+t^{\prime}\right) \tan ^{-1}\left(\frac{p}{\mu+q+\mu^{\prime}}\right)\right] .
\end{aligned}
$$

This result is valid for complex q and p if $\operatorname{Re}\left(\mu+q+\mu^{\prime}\right)>|\operatorname{Im} p|$. The associated conditions for k are :

$$
l+\gamma+l^{\prime}+\gamma^{\prime}+1> \begin{cases}-k-3 & \text { for the } r^{k} \mathrm{e}^{-q r} \sin (p r) \text { integral } \\ -k-2 & \text { for the } r^{k} \mathrm{e}^{-q r} \cos (p r) \text { integral. }\end{cases}
$$

C and K are given by (3).
Of course, when setting $\gamma=0, \mu=Z / n$, one readily obtains the $\left\langle n \| r^{k} \mathrm{e}^{-q r \sin }(p r) \mid n^{\prime} l^{\prime}\right\rangle$ off-diagonal hydrogenic integral.

References

Gradshteyn I S and Ryzhik I M 1965 Tables of Integrals, Series and Products (New York and London: Academic Press)
Hadinger G, Bessis N and Bessis G 1974 J. Math. Phys. 15716
Infeld L and Hull T E 1951 Rev. Mod. Phys. 2321
Kumei S 1974 Phys. Rev. A 92306

